DESIGN SHOWCASE

Low-Cost Sample/Hold Includes Two ICs

Properly connected, a quad-SPDT analog switch and op amp (Figure 1) form a sample/hold circuit. The circuit enconomizes during operation by switching the op amp from input to output, thereby buffering the input (V_{IN}) during sample mode and buffering the hold capacitor (C_H) during hold mode.

The two digital inputs are compatible with TTL and CMOS logic levels. Input command \overline{S}/H controls the circuit's operating mode (low is sample), and DISCH is an optional control input whose low state commands a rapid and complete discharge of C_H. Figure 2 provides a simplified functional diagram of the circuit.

A general-purpose op amp is suitable for IC_1 , provided the input bias current is acceptable (bias current usually dominates the hold-mode droop rate). C_H can range from 100pF to $0.1\mu F$. In driving such a capacitive load, most op amps will oscillate without an isolating resistor (R_1) of 100 to 200Ω within the feedback loop. Using components as shown in **Figure 1**, the typical circuit performance includes: droop rate $\leq 100 \text{mV/sec}$, aperture time $\leq 100 \text{nsec}$, offset voltage $\leq 5 \text{mV}$, output charge injection $\leq 25 \text{pC}$, and acquisition time $\leq 1 \text{usec}$ (for $\pm 10\%$ accuracy) or $\leq 5 \text{usec}$ (for $\pm 0.1\%$ accuracy).

Performance is about the same for $\pm 15 \mathrm{V}$ or $\pm 12 \mathrm{V}$ supplies, and the system also works well on a unipolar supply of 10 to 30V. Whatever the supply configuration, the op amp's common-mode range restricts $\mathrm{V_{IN}}$ to about 2V less than the supply rails. The control inputs' TTL/CMOS switching thresholds (0.8V max, 2.4V min) remain constant regardless of supply levels.

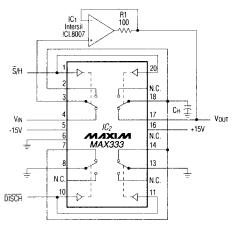


Figure 1. This quad-SPDT analog switch and general-purpose op amp form a low-cost sample/hold suitable for moderate-speed applications.

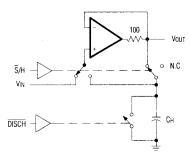


Figure 2. A simplified version of Figure 1 illustrates how the analog switches shift the op amp from the role of input buffer to that of an output hold-capacitor buffer.